Interconversion of Ethylidyne, Ethylidene, Vinyl, and Ethylene Groups at a Dimetal Centre; X-Ray Crystal Structure of [PtW(μ -CO)₂(PEt₃)₂(η -C₂H₄)(η -C₅H₅)][BF₄]

M. Rasol Awang, John C. Jeffery, and F. Gordon A. Stone

Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1TS, U.K.

Treatment of the ethylidyne complex [PtW(μ -CMe)(CO)₂(PEt₃)₂(η -C₅H₅)] with HBF₄·Et₂O affords the salt [PtW(μ -CO)₂(PEt₃)₂(η -C₂H₄)(η -C₅H₅)][BF₄], structurally characterised by X-ray crystallography; other complexes are described, derived from [PtW(μ -CMe)(CO)₂(PMe₃)₂(η -C₅H₅)], with platinum–tungsten bonds bridged by CHMe or C(R)=CH₂ (R = H or Me) groups.

In seeking to understand mechanisms involved in the transition metal catalysed reduction of CO, alkene metathesis, alkyne polymerisation, and methylene transfer reactions, considerable interest has developed in the reactivity of compounds with metal-metal bonds bridged by alkylidene or alkylidyne groups.¹⁻⁴ Attention has focused on dimetal

compounds having either neutral [M(μ -CRR')M] or cationic

 $[M(\mu-CR)M]^+$ (R = R' = H or Me) core structures. In contrast, the reactivity of carbyne groups bridging metalmetal bonds in neutral complexes has not been explored, except for studies on bimetal compounds with μ -CC₆H₄Me-4 ligands.⁵

Herein we describe for the first time some reactions of the μ -CMe group when spanning a heteronuclear metal-metal bond in a neutral complex. These studies were prompted by

the knowledge that protonation (HBF₄·Et₂O) and methylation (MeSO₃CF₃) of (1a) (Scheme 1) affords the compounds (2) in which electron deficiency at the tungsten centre is relieved by η^2 -co-ordination with the tolyl ring.⁶ Protonation or methylation of (1b) should initially give the salts (3). However, these

 $[(Me_{3}P)_{2}Pt^{'}\{\mu-C(R)Me\}^{'}W(CO)_{2}(\eta-C_{5}H_{6})][X]$ R X (3a) H BF₄ (3b) Me SO₃CF₃

species have formally unsaturated tungsten centres, and might be expected to be unstable unless there were agostic interactions between C-H groups of the μ -CMe ligands and the metal.⁷

Scheme 1. $cp = \eta - C_8 H_6$. i, HBF₄·Et₂O; ii, CF₃CO₂H; iii, CF₃SO₃Me in CH₂Cl₂; iv, K[BH(CHMeEt)₃] in tetrahydrofuran (THF); v, Me₃P in CH₂Cl₂; vi, NaBH₄ in THF at -20 °C.

Figure 1. Molecular structure of the cation of $[WPt(\mu-CO)_2-(PEt_3)_2(\eta-C_2H_4)(\eta-C_5H_5)][BF_4]$ (4b). W-Pt 2.602(1), W-C(1) 2.283(16), W-C(2) 2.259(15), C(1)-C(2) 1.431(24), W-C(3) 1.964(14), Pt-C(3) 2.253(16), W-C(4) 2.005(16), Pt-C(4) 2.206(14), Pt-P(1) 2.306(4), Pt-P(2) 2.299(4) Å; W-C(3)-O(3) 167.2(14), W-C(4)-O(4) 162.3(13)^{\circ}.

Protonation of (1b) afforded a stable product (4a), the spectroscopic properties^{\dagger} of which showed that it could not be (3a). Thus the i.r. spectrum had only one CO stretching band

The molecular structure (Figure 1) reveals that in (4b) an ethylene molecule is co-ordinated to tungsten, and the Pt-W bond [2.602(1) Å] is ca. 0.2 Å shorter than that found in a range of platinum-tungsten species previously studied.⁸ The metal-metal bond in (4b) is strongly semi-bridged by the two CO ligands, with a coplanar WC(4)PtC(3) system forming an interplanar angle of 90° with the P(1)PtP(2) plane. The structure of (4b) is similar to that of the complex [MoRh(μ -CO)₂(CO)(PPh₃)₂(η -C₅H₅)] for which multiple metal-metal bonding has also been invoked.⁹ This is not surprising since both compounds are composed of fragments which are isolobally related: W(CO)₂(η -C₂H₄)(η -C₅H₅) vs. Mo(CO)₃-(η -C₅H₅), and Pt(PEt₃)₂⁺ vs. Rh(PPh₃)₂. However, in (4b) the positive charge in the cation may well be delocalised.

Treatment of (1b) with MeSO₃CF₃ does not yield (3b), nor is a propylene analogue of (4) formed. The product (5) has spectroscopic properties[†] consistent with it containing μ -H and μ -C(Me): CH₂ groups. Addition of CF₃CO₂H to (1b) affords (6), the n.m.r. spectra[†] of which clearly establish the presence of the μ -CHMe ligand. In view of the synthesis of (6) it is probable that protonation of (1b) with HBF₄·Et₂O gives (3a) initially which then undergoes a μ -H transfer step to yield a species analogous to (5). However, unlike the latter, and for reasons not yet apparent, this intermediate rearranges to produce the thermodynamically stable species (4a). Compounds (4a) and (5) are readily deprotonated giving the bridged vinyl complexes (7a) and (7b), respectively, but these reactions are reversed with HBF₄·Et₂O (Scheme 1).

The reaction between (4a) and K[BH(CHMeEt)₃] affords a mixture of (7a) and (8). The latter is cleanly prepared, however, by treating (4a) with NaBH₄. Compound (8) exists as a mixture of diastereoisomers.[†] From the relative intensity of the n.m.r. peaks measured from ${}^{31}P-{}^{1}H$ and ${}^{195}Pt-{}^{1}H$ spectra at -30 °C the isomers are present in a ca. 3:1 ratio. If $NaBD_4$ is used to prepare (8), the product has the deuterium label (²H and ¹H n.m.r. studies) in all three bridge positions but with $CH_2D: \mu$ -CD: μ -D in the ratio 3:1:0.35. This suggests that initial attack of deuteride at ethylene affords a W-CH₂CH₂D group which rapidly scrambles deuterium via reversible β -elimination and tungsten-hydride to ethylene addition steps. Subsequent rate determining α -H or α -D migration with a significant kinetic deuterium isotope effect would produce (8) with an appropriate distribution of the deuterium label.

The various reactions summarised in Scheme 1 show that a

heteronuclear dimetal system $\dot{M}(\mu$ -CMe) \dot{M}' can readily afford species containing the groups $M-M'(\eta$ -C₂H₄),

[‡] The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

Crystal data for (4b): $C_{21}H_{39}BF_4O_2P_2PtW$, M = 851.3, monoclinic, space group $P2_1/c$ (no. 14), a = 8.481(2), b = 14.246(3), c = 23.488(7) Å, $\beta = 92.76(2)^\circ$, U = 2.835(1) Å³, Z = 4, $D_c = 2.00$ g cm⁻³, F(000) = 1.616, $\mu(Mo-K_{\alpha}) = 90.4$ cm⁻¹. Current R 0.051 (R_w 0.052) for 3.465, absorption-corrected reflections [293 K, ω -scans, $2\theta \leq 50^\circ$, $I \ge 2.5\sigma(I)$, Nicolet P3m diffractometer, Mo-K_{\alpha} ($\overline{\lambda} = 0.710.69$ Å)].

 $M(\mu-CHMe)M', M\{\mu-C(R):CH_2\}M' (R = H \text{ or } Me),$

M { η -C(Me): CH₂ }(μ -H)M', and M(μ -CHMe)(μ -H)M'. We thank the Malaysian Government for a Scholarship (M. R. A.) and the S.E.R.C. for support.

Received, 31st August 1983; Com. 1174

References

- 1 W. A. Herrmann, Adv. Organomet. Chem., 1982, 20, 160; Angew. Chem., Int. Ed. Engl., 1982, 21, 117; J. Organomet. Chem., 1983, 250, 319.
- 2 C. P. Casey, P. J. Fagan, and W. H. Miles, J. Am. Chem. Soc., 1982, 104, 1134, and references 1-7 therein.

- 3 S. A. R. Knox, *Philos. Trans. R. Soc. London, Ser. A*, 1982, 308, 67; P. Q. Adams, D. L. Davies, A. F. Dyke, S. A. R. Knox, K. A. Mead, and P. Woodward, *J. Chem. Soc.*, *Dalton Trans.*, 1983, 223.
- 4 R. D. Barr, M. Green, J. A. K. Howard, T. B. Marder, I. Moore, and F. G. A. Stone, *J. Chem. Soc.*, *Chem. Commun.*, 1983, 746.
- 5 F. G. A. Stone, in 'Inorganic Chemistry: Toward the 21st Century,' ed. M. H. Chisholm, A.C.S. Symposium Series, No. 211, 1983, pp. 383-395.
- 6 J. C. Jeffery, I. Moore, H. Razay, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1981, 1255.
- 7 M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250, 395.
- 8 M. R. Awang, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1983, 2091.
- 9 L. Carlton, W. E. Lindsell, K. J. McCullough, and P. N. Preston, J. Chem. Soc., Chem. Commun., 1982, 1001.